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Abstract. A reduction procedure to obtain ground states of spin glasses on sparse graphs is developed and
tested on the hierarchical lattice associated with the Migdal-Kadanoff approximation for low-dimensional
lattices. While more generally applicable, these rules here lead to a complete reduction of the lattice.
The stiffness exponent governing the scaling of the defect energy ∆E with system size L, σ(∆E) ∼ Ly ,
is obtained as y3 = 0.25546(3) by reducing the equivalent of lattices up to L = 2100 in d = 3, and as
y4 = 0.76382(4) for up to L = 235 in d = 4. The reduction rules allow the exact determination of the
ground state energy, entropy, and also provide an approximation to the overlap distribution. With these
methods, some well-know and some new features of diluted hierarchical lattices are calculated.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 75.10.Nr Spin-glass and other random
models – 02.60.Pn Numerical optimization

1 Introduction

We propose a set of reduction rules applicable to spin
glasses at T = 0 on any sparse graph and arbitrary bond
distribution. These reductions strip graphs of all variables
that are connected to at most two neighbors while ac-
counting exactly for the ground state energy, entropy, and
approximately for the overlap distribution of the system.
In this paper, we introduce these reduction rules, and test
them on the hierarchical lattice (see Fig. 1) obtained from
the Migdal-Kadanoff bond-moving scheme [1]. The recur-
sive nature of the hierarchical lattice permits us to quickly
reduce the equivalent of 109 graphs with lengths corre-
sponding to L = 2100 in d = 3 and L = 235 in d = 4
dimensions, limited only by accumulating rounding er-
rors. Throughout this paper we focus exclusively on d = 3
and 4, and use only a discrete bond distribution,

P (J) = p δ(J2 − 1) + (1− p) δ(J). (1)

But our procedure is equally applicable to any continuous
bond distribution, such as a Gaussian.

The reduction produces high-accuracy results for the
scaling of the defect energy width σ(∆E) with L. We also
study the diluted lattice, where p shall refer to the fraction
of occupied bonds, and show that this scaling emerges for
all p > p∗. The critical point p∗ = 0.31032 [2] is partic-
ular to the bond distribution in equation (1) and located
just above the percolation point pc = 0.281837 of the lat-
tice. Since pc is a purely topological property of the lattice
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Fig. 1. Recursive generation of the hierarchical lattice, pro-
ceeding from left to right. The reduction rules proceed from
right to left, replacing the sub-graph with a reduced bond.

itself, having p > pc is merely a necessary condition for
long-range correlated behavior in a spin glass. Cooperative
effects from the bond disorder suppress correlations even
for pc < p < p∗, as was already discussed in reference [2].
Correspondingly, the moment 〈|q|〉 of the overlap distri-
bution [3] becomes non-zero only at p∗, while the ground
state energy and entropy remain smooth for all 0 ≤ p ≤ 1,
even at the transition. Both, entropy and overlap, exhibit
an extremum at some p > p∗ which can be explained in
terms of the peculiar lattice hierarchy.

This study suggests that the reduction method pro-
vides a powerful means to explore the (potential) onset of
replica symmetry breaking (RSB) [3] on finite-dimensional
spin glasses for arbitrary bond distributions at T = 0 but
variable p. The onset of glassy behavior (albeit not RSB)
in the Migdal-Kadanoff model at p∗, close to and intrinsi-
cally linked with pc, may suggest such a close link between
percolation and the possible onset of RSB in realistic lat-
tice models, which we are currently exploring [4]. In fact,
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we already found a transition for the stiffness exponent in
real three- and four-dimensional Edwards-Anderson mod-
els, resembling the one observed here, at a p∗ > pc [5].

Considered in terms of the average connectivity α =
2dp ∼ O(1) of spins, dilute lattice glasses as well as the
hierarchical lattice at T = 0 behave strikingly similar
to many mean-field models, which are currently studied
in the context of combinatorial optimization [6,7]. Those
models also enter into a glassy state (exhibiting RSB) at
some finite connectivity α∗, above a finite-connectivity
percolation transition αc < α∗. But in mean-field mod-
els the onset of RSB is often studied as a precursor to
yet another critical point, the satisfiability transition [9],
whereas geometrically defined models are unsatisfiable at
any finite connectivity. These features should be indepen-
dent of the bond distribution, assuming zero mean and
unit variance.

While the hierarchical lattice is completely reducible,
diluted realistic lattices will become irreducible soon above
percolation, in which case our algorithm [5] is used to re-
duce any graph as much as possible first, followed by a
complete exploration of the ground states of the far more
compact remainder graph using the extremal optimiza-
tion heuristic [10]. With this hybrid approach, we are typ-
ically able to compute ground state energies, entropies and
overlaps for graphs 10–100 times larger than previously
recorded, extending well beyond the percolation point.

2 Migdal-Kadanoff hierarchical lattice

To illustrate the reduction method, and to test our algo-
rithm, we consider here the hierarchical lattice (see Fig. 1),
obtained in the Migdal-Kadanoff real-space renormaliza-
tion scheme [1] for low-dimensional spin glasses. These
lattices have a simple recursive, yet geometric, structure
and are well-studied [2,8,11–14]. Most importantly, they
are completely reducible, and we can discuss the method
independently of any subsequent optimization that may
be required for more complicated models. The most inter-
esting property of these lattices is the curious fact that the
scaling of its defect energy distribution behaves very simi-
lar to that measured for actual two- and three-dimensional
lattices [5,8,15].

As described in Figure 1, starting from generation I =
0 with a single link, at each subsequent generation I + 1,
all links from I are replace with a new subgraph. The
structure of the subgraph arises from the bond-moving
scheme in d dimensions, and has 2d = 8 links for d = 3
here. Thus, a hierarchical lattice of generation I has lI =
(2d)I links, thus corresponding to a d-dimensional lattice
of “length” L = 2I but nI = 2 + 2d−1(Ld − 1)/(2d − 1) =
O(Ld) vertices. While the average connectivity is 2lI/nI ∼
4 − 22−d, the two root-vertices from generation I = 0
themselves obtain in generation I � 1 a connectivity of
∼ 2(d−1)I , and ∼ 2dI−1 vertices are only two-connected,
i.e. 7 in 8 for d = 3.

The diluted hierarchical lattice percolates when there
is a path between the two root-vertices. This notion leads

to a simple recursion relation for the percolation thresh-
old by counting the weights of all diluted subgraphs from
Figure 1 that percolate:

pI+1 = 4p2
I − 6p4

I + 4p6
I − p8

I , (2)

which has a non-trivial stationary point at pc =
0.2818376366. It has been pointed out by reference [2]
that a spin glass with the discrete ±J-bond distribu-
tion in equation (1) exhibits instead a critical transi-
tion between a paramagnetic and a spin glass phase at
p∗ = 0.31032, which is closely related to the percolation
transition. While below pc disconnected bonds (J = 0)
clearly dominate and prevent long-range correlations, even
for pc < p < p∗ such correlations remain suppressed due
to the cooperative behavior of parallel bond structures
pervasive in the lattice that leads to many cancellations
(see “double rule” in Sect. 3) and additionally disconnects
subgraphs at some higher level of the hierarchy.

3 Reduction rules for spin glasses

In the Ising spin glass problem we assign to each ver-
tex i of a graph or lattice, 1 ≤ i ≤ n, a spin variable
xi ∈ {−1, +1}, while each link between two connected
vertices i and j obtains a bond variable Ji,j that is drawn
at random from some distribution P (J), which may be dis-
crete or continuous. The problem consists of finding spin
configurations (x1, . . . , xn) which minimize the Hamilto-
nian, or total energy,

H(x1 . . . , xn) = −
∑
〈i,j〉

Ji,j xi xj (3)

for a fixed (quenched) set of bonds Ji,j . Of course, for
Ji,j > 0 (only ferromagnetic bonds), the solution is sim-
ply to make all connected spins aligned with each other.
But if some or all bonds are negative, and spins are suffi-
ciently connected, the problem can be frustrated [16] and
solutions become nontrivial.

In the following, we explain the rules by which to elim-
inate recursively all two-connected spins while account-
ing for the energy, entropy, and approximate overlap of
ground-state configurations. To this end we have to gen-
eralize bonds by adding internal degrees of freedom, which
evolve during the reduction process. Each bond between
two spins i and j now consists of a tuple

Ji,j =
(
Ji,j , m

+
i,j , m

−
i,j , s

+
i,j , s

−
i,j

)
, (4)

where Ji,j is the weight of the bond, m±
i,j is the entropy

accumulated by the bond, and s±i,j counts the number of
previously reduced spins whose state is completely deter-
mined (“entrained”) by the bond for xixj = ±1, respec-
tively. In addition, there is an energy offset Eoffset ≤ 0
accounting for the energy difference between the original
and the reduced graph. In general, determining entropy
and overlap from the m- and s-values can be quite compli-
cated for the interesting case of an irreducible remainder
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graph [4]. For the completely reducible hierarchical lattice,
it is a lot simpler and we will describe it below. Initially,
for the unreduced graph, all m- and s-values and Eoffset

are zero, and the bonds are drawn from one of the usual
distributions, for example, equation (1).

These rules are elaborate but easily enumerated, inde-
pendent of the previous or future structure of the graph
or the spin configuration. A more complete set of rules in-
cluding zero-, one-, and three-connected vertices required
for arbitrary graphs will be presented elsewhere [4,5].
There, each spin i obtains one additional number si (aside
from its state xi) that counts the previously eliminated
spins whose state is entrained to i.

To demonstrate the use of these extra degrees of
freedom, consider, for instance, the reduction of a one-
connected spin j: It and its bond Ji,j to its sole neighbor i
disappears from the graph, and the connectivity of i is
decremented. The new graph will have itself a ground state
energy offset by |Ji,j | relative to the unreduced graph, i.e.
Eoffset ← Eoffset − |Ji,j |. For Ji,j = 0 (a possibility we
eventually have to allow for, even if our unreduced bond
distribution did not), all information contained in Ji,j is
discarded and si doesn’t change, since xj is free to take on
any value ±1 in the ground state; only the entropy of the
old graph is offset by ln 2 with respect to the new graph.
In turn, for Ji,j > 0 (Ji,j < 0), j is entrained to the state
of i in any ground state configuration, and si is incre-
mented. If the bond Ji,j had previously inherited nonzero
entropies m±

i,j and entrainments s±i,j , there would be an
offset in entropy by m+

i,j (m−
i,j) between the reduced and

the original graph, and si would be further increased by
s+

i,j (s−i,j); m−
i,j (m+

i,j) and s−i,j (s+
i,j) are discarded because

the ground state must have xixj = +1 (xixj = −1).
With the two-point rule we use exclusively in this pa-

per, a spin variable xi and its two bonds J1 and J2 are
replaced by a new bond J . It is easy to show that

J =
1
2

(|J1 + J2| − |J1 − J2|) , (5)

which assigns to J the bond-weight with the smaller mod-
ulus and the sign of J1J2. The energy offset Eoffset, ac-
counting for the energy of the original graph, will have to
be lowered by

1
2

(|J1 + J2|+ |J1 − J2|) . (6)

At this level, our reduction rules correspond to the familiar
traces (at T = 0) used many times before to study the
hierarchical lattice (see, e.g., Refs. [13,15]).

Clearly, for |J1| �= |J2|, the reduced spin i is entrained
to the neighbor with the bond of larger modulus, while
the weaker bond may be violated. The entropy and en-
trainment variables that J inherits from the two reduced
bonds are controlled by the sign of the stronger one. We
can summarize these rules by defining J> and J< as the
bond with the stronger and weaker weight (in modulus),

respectively. Then, we obtain for the new bond:

|J>| > |J<| :

m± = m
sign(J>)
> + m

±sign(J>)
< ,

s± = s
sign(J>)
> + s

±sign(J>)
< . (7)

The case |J1| = |J2| leads to further distinctions:

m± =




m
sign(J1)
1 + m

sign(J2)
2 , J1 = ±J2 �= 0

ln
(
em+

1 +m±
2 + em−

1 +m∓
2

)
, J1 = ∓J2

s± =




s
sign(J1)
1 + s

sign(J2)
2 , J1 = ±J2 �= 0

0, J1 = ∓J2.
(8)

Finally, we need a rule to combine double bonds,
which will be created eventually. When two bonds, J1

and J2, connect the same two spins, they are simply
replaced with a new bond

J = J1 + J2. (9)

It is important to note that the two-point and double rules
only effect the newly created bond and the energy offset,
but not the two neighboring spins (or the entropy offset).
Unlike for the one-point rule, we do not need to consider
an internal entrainment number for spins here.

4 Algorithm and implementation

With the reduction rules from Section 3, it is now straight-
forward to evaluate hierarchical lattices of any size. In
effect, these rules allow us to reverse the generating mech-
anism depicted in Figure 1. Recursively, from one gener-
ation to the next, we reduce all two-connected spins in
the middle of the subgraph first (assuming diluted bonds
as having J = 0), then use the double-bond rule sequen-
tially, until a single, reduced bond is left. Once an en-
tire graph has been reduced into such a single bond, the
weight J of that bond is in fact half the defect energy,
∆E = 2J , of that graph, i.e. the energy difference be-
tween having both root spins aligned and anti-aligned.
The entropy of that graph is simply given by msign(J),
or by ln[exp(m+) + exp(m−)] for J = 0. The energy of
the graph can be obtained from the running energy-offset
Eoffset, accounting for the reduction of bonds along the
way, and J . For our purposes, it is more useful to extract
the (non-negative) “cost” of a graph given by the absolute
weight of all violated bonds for any bond distribution. In
case of the discrete ±J distribution in equation (1), this
sum reduces to a count of all violate bonds (all of abso-
lute weight 1) (l + Eoffset − |J |)/2, where 〈l〉 = pLd is the
average number of non-vanishing bonds in a graph. As an
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approximate measure of the overlap, we merely store the
largest entrainment number smax observed at any point
during the reduction process, which is a measure of the
largest correlated cluster of spins within the lattice. The
size of this cluster will either dominate the overlap (with
smaller clusters adding some negligible fluctuations) in the
spin glass state or be itself a vanishing fluctuation in the
paramagnetic state.

Although these measurements are not difficult, the re-
duction of ever larger graphs soon becomes untenable,
since the cost of reducing true graphs would grow by a
factor of 2d for each generation. Instead, we exploit the
fact that each subgraph within the hierarchy is indepen-
dent of any other parallel subgraph. As above, we reduce
all graphs down to a single bond. To assemble a graph
of generation I + 1 we only need a large enough pool of
independent graphs of generation I. In fact, many nearly-
independent graphs of generation I + 1 can be assembled
by repeatedly drawing at random on 2d graphs of genera-
tion I from that pool.

We proceed as follows: Assume that we already possess
a pool of AI reduced graphs at every generation I (up to a
maximal generation Imax), each graph represented by its
bond J , Eoffset, and smax. Each cycle of the algorithm gen-
erates an elementary subgraph (generation I = 1) with 2d

bonds J drawn from the bond distribution in equation (1)
and empty entropy, entrainment, Eoffset, and smax vari-
ables. The elementary subgraph is reduced to obtain a
bond J of the first generation, replacing the oldest entry
in pool A1. After every kth new reduced bond entering
into pool AI−1, we randomly assemble 2d such bonds into
a new subgraph to create a new reduced bond to be en-
tered into pool AI , as long as I ≤ Imax.

If we choose AI = k = 2d and assemble bonds sequen-
tially instead of at random, this algorithm produces exact
hierarchical lattices, where each subgraph is certain to be
independent. But to obtain just one graph of, say, genera-
tion I = 10, we have to assemble 230 elementary subgraphs
for d = 3. Instead, for all p not too close to p∗, we simply
choose large pools, AI = 2048, and as small as k = 1. That
is, each time we assemble an elementary graphs at I = 0,
we enter its value to pool A1, assemble a subgraph out of
A1, add the reduced bond to pool A2, etc., all the way up
to Imax in each cycle. Hence, our implementation becomes
independent of L, and for instance at p = 1 we have as-
sembled graphs up to generation Imax = 100 in d = 3 and
Imax = 35 in d = 4, corresponding to L = 2100 or 235, re-
spectively. Imax is only limited by apparent limits on float-
ing point accuracy due to repeated cancellation between
almost equal bonds. Note that each pool gets completely
refreshed after AI creations of new graphs from the pool
just below it, while there are about O(2dAI ) different sub-
graphs that could be created out of each pool at any one
time.

Every time a graph gets added to a pool, its properties
are evaluated from its J , Eoffset, and smax. While ground
state energy, entropy, and (approximate) overlap converge
quickly with I, and throughout are quite independent of
the choice of k and AI , the measurement of the defect

energy becomes quite sensitive to the algorithmic param-
eters near p∗. In those cases, we increase k (and lower Imax

correspondingly), until stable results were obtained. Only
at p ≈ p∗, the exact algorithm was necessary to observe
the true defect energy distribution.

5 Numerical results

Using the algorithm from Section 4, we have studied vari-
ous properties of a Ising spin glass with bond distribution
as given in equation (1) on the diluted and undiluted hier-
archical lattice. In fact, using the easiest implementation
with k = 1, pool sizes of AI = 2048, and Imax = 20, we
first scanned lattices for 0 < p ≤ 1 in steps of ∆p = 0.1. At
each p and I, we averaged over 107 values. We found that
for each p, the ground state energies per spin, entropies
per spin, and the moment of the overlap, 〈|q|〉 were well-
converged at Imax = 20, and insensitive to the choice of k
using trials with k = 2.

We also found the width of the defect energy distri-
bution, σ(∆E) =

√〈∆E2〉 − 〈∆E〉2, to be stable except
for p = 0.3. For large I = log2(L) the distribution of de-
fect energies either collapses into a δ-function at zero for
small p, or eventually converges to the distribution of the
undiluted lattice (p = 1). Near p ≈ p∗, the evolution of
that distribution becomes highly sensitive to small fluctu-
ations, and the minute statistical dependencies inherent in
our algorithm for small k escalate. Thus, we ran another
scan for 0.28 ≤ p ≤ 0.34 using k = 2 and 104 graphs at
Imax = 20 (and hence gaining a factor k more graphs at
each lower generation I). Now, only for p = 0.31 ≈ p∗
did σ(∆E) become unstable (by comparison with trial
runs at k = 4). Finally, for p = 0.31, we used an ex-
act algorithm and indeed found σ(∆E) to be horizontal
for many generations until it eventually decays, indicat-
ing that p∗ � 0.31, consistent with the expected value
of 0.31032 from reference [2]. The results for σ(∆E) as a
function of I = log2(L) for all p are shown in Figure 2.

In Figures 3–5 we plot the number of violated bonds
(or cost) per spin, entropy per spin, and a characteris-
tic moment of the (approximate) overlap distribution for
L→∞ and d = 3. The cost is already non-zero for small p,
rising consistent with p4, proportional to the probability of
creating a small, frustrated loop that requires four bonds.
Just beyond p∗, the cost per spin rises more slowly, but
without drastic changes for any p. Similarly, the entropy
density in Figure 4 remains unaffected by the transition at
p∗, as is expected [17]. Instead, it reaches a minimum at
about p = 0.7 that is an artifact of the hierarchical lattice.
The large majority of spins in the graph (a fraction ∼ 7/8
for d = 3) are at most two-connected spins whose contri-
bution dominates the entropy density. In a fully bonded
graph (p = 1), about half of these spins are free, the other
half is constraint, with an energy density of ln(2)/2. For
small dilutions p � 1, about every removed bond turns
a two-connected spin into a one-connected spin, which
is always constrained, and the entropy declines. Eventu-
ally, at large dilution (small p), an increasing number of
one-connected spins become totally disconnected and free
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Fig. 2. Plot of the width σ(∆E) of the defect energy distri-
bution as a function of systems size L in d = 3 for various
bond fractions p. Dashed lines from bottom to top refer to
p = 0.1, 0.2, . . . , 1, while data with diamonds and crosses re-
fer to p = 0.28, 0.29, . . . , 0.34. The data points with circles
were obtained using the k = 1 implementation from Section 4,
those with diamonds using k = 2, and those with crosses at
p = 0.31 ≈ p∗ required the exact algorithm. Note that for
p < p∗ the width evolves toward the p = 0 fix-point with
σ(∆E) = 0, while for p > p∗ it invariably evolves to the p = 1
fix-point with scaling behavior σ(∆E) ∼ Ly . While the exact
asymptotic behavior emerges only for very large sizes L when
p ≈ p∗, it is already obvious for small L whether σ(∆E) is
going to rise or to fall.
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Fig. 3. Log-log plot of the cost per spin for the infinite system
in d = 3 as a function of p. This cost, i.e. the fraction of
violated bonds, only approaches zero for p → 0 (consistent
with p4). The data smoothly continues through both critical
points at pc and p∗(> pc), indicated by dashed vertical lines.
For p > p∗ the cost appears to rise less rapidly than for p < p∗.

again, raising the entropy density to its ultimate value,
ln(2), for the unconnected (p = 0) lattice. By this argu-
ment the entropy density should be given simply by

S

n
≈

[
(1− p)2 +

1
2

p2

]
ln(2), (10)

which fits the data in Figure 4 exceedingly well.
In contrast with energy and entropy, the overlap dis-

tribution is clearly sensitive to the transition from para-
magnetic to glassy behavior at p∗, as shown in Figure 5.
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Fig. 4. Plot of the entropy per spin for the infinite system
as a function of p. The data smoothly continues through both
critical points at pc and p∗, indicated by dashed vertical lines,
but exhibits a surprising minimum. The data is approximated
well by equation (10) (continuous line), as discussed in the text.
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Fig. 5. Plot of the moment 〈|q|〉 of the overlap distribution
as a function of p. The moment remains zero for all p ≤ p∗,
including at the percolation point pc. (Both, pc and p∗, are
marked by dashed vertical lines.) Above the transition at p∗ to
a spin glass state, 〈|q|〉 rises first linearly, but then turns over
at a maximum at small dilutions just below p = 1, and drops
sharply at p = 1. The inset shows that 〈|q|〉 seems to scale with
(1 − p)1/5 for p → 1; the dashed line is a linear fit.

There, we plot only its moment, since the distribution it-
self quickly converges to a structureless δ-peak as expected
for a model that is replica symmetric (RS) throughout.
In fact, we find that 〈|q|〉/√〈q2〉 ∼ 1 to within 1% for
all p. (For one, a broad overlap distribution indicative of
widely separated ground state configurations and RSB [3]
would be antithetical to the reducibility of the hierarchi-
cal lattice.) About at p∗, the location of the peak becomes
non-zero and splits into two symmetric peaks, leading to
a non-zero moment 〈|q|〉.

The moment experiences a surprising maximum very
close to p = 1, varying sharply for small dilutions. Again,
the maximum may be explained in terms of the abundance
of two-connected spins: Whatever the size of strongly cor-
related spin clusters may be in the fully connected lattice
(p = 1), the overwhelming conversion of two-connected to
one-connected spins at small dilution can only increase the
size of those clusters at its edge, since one-connected spins
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are always entrained. But more importantly, the elimi-
nation of two-connected spins, say, within a subgraph as
shown in Figure 1 will enhance the probability that the
two root-spins of that subgraph become correlated, which
would merge the clusters that those spins are part of.
While the latter effect could suddenly increase the size
of typical clusters by a factor, it is not clear whether the
steep slope observed at p = 1 is not an artifact of our ap-
proximation to the overlap (see Sect. 4). Further numerical
studies suggest that

〈|q|〉p − 〈|q|〉p=1 ∼ (1− p)
1
5 (p→ 1), (11)

as seen in the inset of Figure 5. We have not found an
explanation for the scaling in equation (11) in terms of the
lattice yet, since it is also a property of the entrainment
in the spin glass state (and hopefully, the overlap).

As shown in Figure 2, for all p > p∗ we obtain the
expected scaling of the width of the defect energy distri-
bution with system size L,

σ(∆E) ∼ a Ly [1 + ε(L)] , (12)

for large enough L, including a next-to-leading correc-
tion ε(L)  1. Most conveniently, it appears that our
k = 1 algorithm (for large enough pools AI) described
in Section 4 is least likely to create spurious dependen-
cies for p = 1, where we would expect the quickest and
most stable convergence toward the renormalized bond
distribution. Thus, we disabled the sampling of energy-
offsets, entropies, and entrainments, which already are
well-converged at Imax = 20, and only focused on the re-
duction of bonds. Setting Imax = 100 (d = 3) or Imax = 40
(d = 4), k = 1, and AI = 1024 for each I, we mea-
sured more than 109 reduced bonds at each I to obtain
the distributions of defect energies ∆E = 2J in d = 3
and 4. (In fact, we repeated the same calculation with
a different random number generator, without markable
difference in results. A previous run with Imax = 150 in
d = 3 showed divergence due to limited floating point pre-
cision at I ≈ 120; the same problem emerged already at
Imax = 40 in d = 4.) At that level, we obtained a ratio
between its absolute mean and its width σ(∆E) of < 10−4

in both dimensions, even for the largest I, which is a mea-
sure of the statistical error (the distribution is supposed
to be symmetric).

Surprisingly, although we extended the scaling regime
in d = 3 by a power of 10 compared to previous calcula-
tions (L = 2100 compared to L = 210 [13]), the extrapola-
tion for the scaling exponent y in equation (12) only yields
5 digits accuracy, see top of Figure 6. First, we approxi-
mated y ≈ 0.2555 from the intercept of log2(σ)/ log2(L)
with respect to 1/ log2(L) at L→∞, which displays large
corrections to scaling. We are then able to refine our esti-
mate of y by converting equation (12) to ln(σ)−y ln(L) ∼
ln(a) + ε(L), using ln(1 + ε) ∼ ε. Plotting that expres-
sion again vs. 1/ log2(L) (note that log2(L) = I) sug-
gest a straight-line asymptotic behavior that would imply
ε ∼ b/ log2(L) for L → ∞. The top of Figure 6 indi-
cates that a value of y = 0.25546(3) in d = 3 leads to
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Fig. 6. Extrapolation plot for the leading asymptotic behav-
ior of σ(∆E) as a function of system size L in d = 3 (top)
and d = 4 (bottom). The data for σ(∆E) is converted to
ln(σ) − y ln(L) and plotted vs. the apparent scaling correc-
tion, 1/ log2(L), for different estimates of the exponent y. For
d = 3 the graph at the center (circles) plots the data for
y = 0.25546 and seems to converge linearly to a finite value
of about 3/4 for L → ∞. In turn, using y = 0.25549 (down tri-
angle) or y = 0.25543 (up triangle) on the same data seems to
lead tor diverging extrapolations, suggesting y3 = 0.25546(3).
The same procedure for d = 4 brackets the “best” choice
of y = 0.76382 (circles) between two diverging choices of
y = 0.76386 (down triangle) and y = 0.76378 (up triangle),
suggesting y4 = 0.76382(4).

an apparently converging result with ln(a) ≈ 3/4 at the
intercept for L → ∞. We have used the same procedure
to find y = 0.76382(4) in d = 4, see bottom of Figure 6.
Although the floating point accuracy here deteriorated al-
ready at L = 235, the asymptotic scaling regime is reached
for much small L than in d = 3, leading to comparable ac-
curacy in the fit.

Our value for the stiffness exponent y in d = 3 is 6%
below y = [d − 1 + log2(1 − 2/π)]/2 = 0.2698 obtained
analytically in reference [12] with a Gaussian approxima-
tion, and consistent with y ≈ 0.25 obtained numerically
in reference [8] by evolving a “pool” of bonds through
several generations, very similar to our algorithm in Sec-
tion 4. Since both of these references use an initial Gaus-
sian bond distribution, in contrast to our discrete distribu-
tion in equation (1), the results suggest that the stiffness
exponent is independent of the bond distribution. In ref-
erence [14], an expansion in the limit of large dimension
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d→∞ is used that demonstrates the independence of y on
the initial bond distribution. A recursion in the generation
I is constructed which for I → ∞ leads invariably to the
Gaussian derived in reference [12]. With finite-dimensional
corrections, this expansion improves on the Gaussian re-
sult above to yield y3 ≈ 0.254 and y4 ≈ 0.761, in excellent
agreement with our results here. In contrast, we would
expect that energy, entropy, overlap, and even p∗ would
depend on the distribution at least quantitatively.

6 Conclusions

We have presented a new method to reduce spin glasses
on arbitrary graphical structures. The reductions are
most appropriate for sparse graphs near their percola-
tion threshold, which may be either completely (as in this
paper) or substantially reduced, facilitating further opti-
mization using standard methods [5,4]. In either case, the
reductions allow to extract exact ground state energies
and entropies, and even provide a good approximation to
collective properties such as the overlap distribution.

With the reduction method we have reproduced a
number of ground-state properties of the Migdal-Kadanoff
hierarchical lattice at any dilution, and discovered various
new features, which can be mostly explained in terms of
the lattice structure. The simplicity of this model further
permitted us to determine the exponent y in d = 3 and 4
for the growth of the defect energy with system size to
unprecedented accuracy. We have recently applied the re-
duction method to diluted Edwards-Anderson models for
d = 3 and 4, obtaining y3 = 0.240(5) and y4 = 0.60(1) for
the respective stiffness exponents [5]. These results demon-
strate that the Migdal-Kadanoff approximation in d = 3
is even closer to the Edwards-Anderson value than had
been previously expected [8,15], although they are defi-
nitely distinct. The differing values in d = 4 reflect the
fact that Migdal-Kadanoff is a low-dimensional approxi-
mation.

The results obtained here and in reference [5] sug-
gest that the reduction method may be a useful tool in

the exploration of Ising spin glass systems on any graph
or lattice near percolation that may reveal the onset of
non-trivial configurations of ground states.

I would like to thank A. Percus and M. Paczuski for helpful
discussions.
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